DIY » Статьи » Прочие конструктивы и схемотехника » «Параллельный» усилитель в УМЗЧ Агеева (25 Вт/8 Ом)

«Параллельный» усилитель в УМЗЧ Агеева (25 Вт/8 Ом)

Применение в усилителе мощности так называемого «параллельного» усилителя позволило при хорошей термостабильности тока покоя обойтись без традиционных для двухтактных выходных каскадов, работающих в режиме АВ, тщательного подбора термокомпенсирующей цепи и регулировки тока покоя. Однако такой существенный недостаток «параллельного» усилителя, как неудовлетворительная амплитудная характеристика, не позволил использовать еще одно его достоинство: как и некоторые другие многокаскадные усилители на комплементарных парах транзисторов, он обладает относительно высокой линейностью.

^Нажмите для увеличения^

Рис. 1

Как оказалось, амплитудную характеристику «параллельного» усилителя можно улучшить и не применяя диодного коммутатора усилительных каналов. На рис. 1 приведена принципиальная схема усилителя мощности звуковой частоты (УМЗЧ), оконечный каскад которого (транзисторы VT9 – VT12) представляет собой «параллельный» усилитель. Улучшения амплитудной характеристики удалось достичь применением цепей R13 – R15C5 и R16 – R18C6, выполняющих функции генераторов стабильного тока в базовых цепях транзисторов VT11, VT12. Напряжения на конденсаторах С5 и С6 практически не зависят от уровня сигнала и равны примерно 8 В. Напряжения же на эмиттерных переходах транзисторов VT11 и VT12 изменяются в пределах от 0,5 до 1,5 В, поэтому ток, например, через резистор R15 практически постоянен и в зависимости от амплитуды сигнала лишь перераспределяется между эмиттером транзистора VT9 и базой VT11. Если исключить конденсаторы С5, С6, фактически реализовав выходной каскад, то уровень ограничения уменьшится с ±24 до ±12 В и, что интересно, коэффициент гармоник еще не ограниченных сигналов возрастет примерно в 10 раз.

Основные технические характеристики оконечного каскада следующие:

Номинальная выходная мощность: 25 Вт/8 Ом

Номинальное входное напряжение: 15 В (входное сопротивление 4 кОм)

Коэффициент гармоник: 0,22%

Ток покоя: 0,25 А

Постоянное напряжение на выходе в отсутствие сигнала: ±0,05 В

Каскад можно использовать как функционально законченный узел, например, для «умощнения» уже существующих УМЗЧ или в качестве оконечных каскадов усилителей в многополосной системе с разделением частот на ее входе.

Еще одно возможное применение «параллельного» усилителя иллюстрирует каскад на транзисторах VT1 – VT4. Выходными сигналами в данном случае являются не токи эмиттеров транзисторов VT3, VT4, а токи коллекторов, которые суммируются уже не непосредственно: они поступают в каскады, аналогичные так называемому «токовому зеркалу» (транзисторы VT5 и VT6, VT7 и VT8), с той лишь разницей, что эти каскады дополнительно усиливают ток примерно в 10 раз. Точка соединения эмиттеров транзисторов VT3, VT4 является входом для сигнала ООС, поступающего с низкоомного делителя напряжения R10R11C3. Глубина ООС невелика (около 30 дБ), поэтому усилитель не самовозбуждается и без дополнительной коррекции АЧХ.

Вносимые предварительным усилителем искажения сигнала весьма специфичны. Если напряжение ООС перестает изменяться, например, вследствие ограничения его на выходе УМЗЧ, то ток транзистора VT3 или VT4 возрастает до тех пор, пока он не войдет в режим насыщения. При этом, если исключить элементы R6,VD1 и R7,VD2 напряжение на входе оконечного каскада от уровня, предшествующего моменту ограничения (около 21 В), быстро снизится примерно до 1 В. В результате вместо ограниченной синусоиды на выходе УМЗЧ появится сигнал, состоящий из ее участков, чередующихся с участками постоянного напряжения, близкого к нулю.

Благодаря применению токоограничительных резисторов R6, R7 сигнал на входе оконечного каскада при насыщении транзисторов VT3 или VT4 практически не отличается (меньше всего лишь на 0,3 В) от уровня ограничения.

Основные технические характеристики УМЗЧ:

Полоса номинальной мощности: 20 – 200000 Гц

Номинальная выходная мощность: 25 Вт/8 Ом

Номинальное входное напряжение: 1 В (входное сопротивление 150 кОм)

Коэффициент гармоник: не более 0,15%

Коэффициент интермодуляционных искажений: 0,2%

Максимальная скорость нарастания выходного напряжения: 15 В/мкс

Выходное сопротивление: 0,2 Ом

Несколько слов об особенностях оконечного каскада, характерных для «параллельных» усилителей вообще. При конструировании таких усилителей необходимо учитывать площади эмиттерных переходов применяемых транзисторов. Отметим, что ток, втекающий в базу транзистора VT11 (VT12), не может превышать тока покоя транзистора VT9 (VT10), так как ток через резистор R15 (R16) практически неизменен. Нетрудно рассчитать максимальный ток базы транзистора VT11 (VT12), учитывая обратную зависимость коэффициента передачи h21э от тока эмиттера. Для усилителя по схеме на рис. 1 ток покоя транзистора VT9 (VT10) равен 83 мА. Далее, ток покоя транзистора VT11 (VT12) но сколько раз больше тока покоя транзистора VT9 (VT10), во сколько раз площадь эмиттерного перехода первого больше аналогичной площади второго. Например, если в оконечном каскаде использованы пары транзисторов КТ814/КТ815 (VT9/VT10) и KT819/KT8I8 (VT11/VT12), ток покоя последних будет примерно в 6 раз больше.

Итак, в «параллельном» усилителе существуют три цепи протекания тока покоя:

  1. R13 R15, VT9;
  2. VT10, R16— R18;
  3. VT11, VT12.

Для усилителя по схеме на рис. 1 (VT9 эквивалентен VT11, a VT10 – VT12) общий ток покоя составит: 83 мА + 83 мА + 83 мА = 250 мА. Очевидно, что наименьшим он будет в том случае, если пары транзисторов VT9/VT10 и VT11/VT12 будут одинаковыми. Более того, в оконечном каскаде нежелательно использовать транзисторы серий КТ816, КТ817. У них при тех же токах эмиттеров параметр h21э значительно меньше, чем у КТ818, КТ819, а это требует увеличения токов покоя транзисторов VT9, VT10 и усилителя в целом. Уменьшение коэффициента h21э при больших токах эмиттера приводит к тому, что для работы усилителя на нагрузку сопротивлением 4 Ом ток покоя придется увеличить не в 2 раза, а примерно в 3 раза. Из сказанного ясно, что сильная зависимость параметра h21э от тока эмиттера кремниевых транзисторов является ограничивающим фактором для их применения в «параллельном» усилителе.

В том, что в описываемом УМЗЧ применены транзисторы серий КТ818 и КТ819, есть и еще одна положительная сторона: усилитель выдерживает короткое замыкание нагрузки в течение десятков секунд, поэтому для его надежной зашиты достаточно установить в цепях питания плавкие предохранители.

Несмотря на сходство с известными двухтактными усилителями мощности, работающими в режиме АВ, «параллельный» усилитель является линейным усилителем в том смысле, что рабочие точки его транзисторов не заходят в область отсечки коллекторного тока (т.е. транзисторы всегда открыты). Если же в цепи эмиттеров транзисторов VT11, VT12 включить резисторы сопротивлением 0,2 Ом, как это делается в известных усилителях, то их рабочие точки будут заходить в область отсечки коллекторного тока, из-за чего значительно возрастет коэффициент гармоник.

Термостабильнсть оконечного каскада обеспечивается попарной установкой транзисторов VT9, VT12 и VT10, VT11 на теплоотводах, а входного за счет достаточно малого теплового сопротивления коротких выводов транзисторов и небольшой, более того, примерно одинаковой рассеиваемой ими мощности.

Обычно ограничения, связанные со снижением коэффициента h21э при больших токах эмиттера, можно, если использовать вместо каждого транзистора оконечного каскада составной транзистор.

^Нажмите для увеличения^

Рис. 2

На рис. 2 показана схема УМЗЧ, в котором «параллельный» усилитель использован и в устройстве защиты выходною каскада от короткого замыкания в нагрузке. Устройство работает следующим образом. К одной из диагоналей измерительного моста, образованного резисторами R18, R19, R23 и нагрузкой Rн, подводится выходное напряжение усилителя, к другой подключены «параллельный» усилитель на транзисторах VT15 VT18 и симметричный пороговый элемент, состоящий из включенных встречно-параллельно диодов VD5, VD6. В нормальных условиях напряжение между точками соединения резисторов R18, R19 и R23, Rн меньше напряжения открывания порогового элемента, и через коллекторы транзисторов VT17, VT18 протекают небольшие (около 1 мА) постоянные токи, которые не оказывают влияния на работу оконечного каскада. При коротком замыкании нагрузки практически все падение напряжения на резисторе R23 прикладывается к пороговому элементу, один из диодов VD5, VD6 открывается и через коллектор соответствующего транзистора (VT17 или VT18) протекает ток соответствующей цепи (R13R14VD3 или R16R15VD4). В результате ток выходного каскада УМЗЧ (VT13, VT14) ограничивается значением, меньшим максимального в нормальных условиях работы. Конденсатор С7 уменьшает скорость срабатывания защиты. Дело в том, что точно сбалансировать измерительный мост во всем диапазоне частот невозможно, особенно это трудно сделать в его высокочастотной области. Для. улучшения балансировки на средних частотах параллельно резистору R18 необходимо подключить конденсатор С11 (на рис. 2 показан штриховыми линиями), емкость которого подбирают экспериментально.

Основные технические характеристики УМЗЧ, собранного по схеме на рис. 2 (с предварительным усилителем), следующие:

Полоса номинальной мощности: 20 – 200000 Гц

Номинальная выходная мощность: 50 Вт/4 Ом

Коэффициент гармоник: 0,15%

Коэффициент интермодуляционных искажений: 0,2%

Максимальная скорость нарастания выходного напряжения: 15 В/мкс

Выходное сопротивление: не более 0,43 Ом

Ток короткою замыкания выхода: 2,3 А

Отличие этого усилителя от предыдущего заключено в оконечном каскаде. Транзисторы VT13, VT14 работают без начального напряжения смещения. Резистор R17 линеаризует оконечный каскад. Его функции заключаются в том, что при малых выходных сигналах (менее 0,6 В) напряжение ЗЧ с предыдущего каскада (VT9 – VT12) поступает в нагрузку, минуя транзисторы VT13, VT14. С увеличением сигнала эти транзисторы включаются значительно плавнее при наличии резистора R17 (R17=2Rн), чем без него, и коэффициент гармоник оконечного каскада не превышает 15% (без резистора он в несколько, раз больше). К каскаду, предшествующему оконечному, предъявляются жесткие требования: низкое выходное сопротивление и хорошая линейность без цепи ООС. Невыполнение первого из этих требований в усилителе не позволило даже при глубине ООС 60 дБ получить коэффициент гармоник меньше 0,5 %.

Напряжения питания обоих вариантов усилителей могут быть снижены до ±6 В, при этом их работоспособность сохраняется.

Питать усилители можно нестабилизированными напряжениями.

Конструкция и детали

В обоих усилителях транзисторы можно заменить:

КТ315В можно заменить на КТ315Г – КТ315Е;

КТ361В – на КТ361Г – КТ361Е;

КТ3102А и КТ3107А – КТ3102Б, КТ3102Е, КТ3117А, КТ373А, КТ373Г и КТ3107Б, КТ3107И, КТ3108А.

Вместо указанных на схемах в оконечных каскадах можно использовать транзнсторы серий КТ814, КТ815, КТ818, КТ819 с индексами Б и В, а при снижении напряжений питания до ±15 В — с индексом А. Статический коэффициент передачи тока h21э транзисторов VT11, VT12 (рис. 1) должен быть не менее 30.

При сборке усилителя по схеме, на рис. 1 транзисторы оконечного каскада, соединенные выводами коллектора с одноименным проводом питания, устанавливают на одной стороне общего теплоотвода вплотную друг к другу. Транзисторы VT9, VT12 и VT10, VT11 усилителя по схеме на рис. 2 монтируют на пластинчатых теплоотводах, разметенных непосредственно на печатной плате. Их изготовляют из листового алюминиевого сплава толщиной 0,5-1 мм. У заготовки размерами 40х50 мм отгибают под прямым углом полку шириной 10 мм, в которой сверлят два отверстия поя винты крепления к плате. Для транзисторов оконечных каскадов использованы теплоотводы 8.650.022 с эффективной площадью охлаждения 300 см2.

Вместо диодов КД522 можно использовать любые маломощные кремниевые диоды с обратным напряжением не менее 50 В, вместо Д9А – любые германиевые, рассчитанные на прямой ток 100 мА.

Обязательным элементом обоих усилителей должен быть конденсатор С2 и плавкие предохранители FU1, FU2. Если для питания предполагается использовать нестабилизированный источник, соединять усилитель с конденсаторами фильтра следует либо проводниками малой длины (менее 100 мм), либо большого сечения (около 1 мм2) При невыполнении этого условия значительно возрастает коэффициент гармоник. Если же используется стабилизированный источник, к шинам питания УМЗЧ необходимо дополнительно подключить конденсаторы емкостью 2000 мкФ.

Правильно собранные усилители налаживания не требуют. Единственное, что необходимо сделать, это сбалансировать измерительный мост устройства защиты (рис. 2) подбором конденсатора C11 и резистора R19.

В заключение следует отметить, что основным источником нелинейных искажений в УМЗЧ по схеме на рис. 2 является усилитель напряжения (VT1 VT4). Коэффициент гармоник усилителя с разомкнутой цепью ООС достигает 3%. Улучшив линейность этого каскада усилителя, можно снизить коэффициент гармоник до 0,01-0,03%.

Автор: Агеев А. (журнал «Радио» №8, 1985)

 

 

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Смотрите также:

  • Ремонт развертывающих устройств телевизоров — Самойлов Г.П.Ремонт развертывающих устройств телевизоров — Самойлов Г.П.
    ^Нажмите для увеличения^ Массовая радиобиблиотека (МРБ) выпуск 377 Ремонт развертывающих устройств телевизоров Автор(ы): Самойлов Г.П. 1960 год В книге описаны, основные принципы работы схем развертки и синхронизации телевизоров, приведены примеры неисправностей этих схем, указаны их причины и способы устранения. Книга предназначена для радиолюбителей и радиомехаников, занимающихся ремонтом телевизоров. Скачать книгу …
  • Высокочастотный пентод 6Ж11ПВысокочастотный пентод 6Ж11П
    Высокочастотный пентод 6Ж11П 6Ж11П Высокочастотный пентод с короткой характеристикой ^Нажмите для увеличения^   Схема соединения электродов лампы 6Ж11П со штырьками: 1 и 3 — катод; 2 — первая сетка; 4 и 5 — подогреватели (накал); 6 — свободный; 7 — анод; 8 — третья сетка и экран; 9 — вторая …
  • Триод 6С33C. Технические характеристикиТриод 6С33C. Технические характеристики
    Триод 6С33C. Технические характеристики 6С33C (триод) ^Нажмите для увеличения^ Основные размеры лампы 6С33C. Общие данные Применяется для работы в качестве регулирующей лампы в электронных стабилизаторах напряжения. Оформление — в стеклянной оболочке. Масса 200 г.   Междуэлектродные емкости, пФ Входная 30+-7. Выходная 10.5+-1. Проходная 31+-7. Между катодом и подогревателем не более …
  • Лампа ГИ-41 — импульсный генераторный триодЛампа ГИ-41 — импульсный генераторный триод
        ^Нажмите для увеличения^ Схема соединения электродов лампы ГИ-41 ^Нажмите для увеличения^ Корпус лампы ГИ-41 Описание Импульсные генераторные триоды для генерирования и усиления колебаний в диапазоне 400-300 МГц в импульсных режимах с малой скважностью в схемах с общей сеткой. Оформление — титанокерамическое. Масса: ГИ-41-1 30 г; ГИ-41 36 г. …
  • 35 ГДН-1С-435 ГДН-1С-4
    Изготовитель: Северодонецкий завод сопротивлений. Назначение: для применения в закрытых акустических системах высшей и первой группы сложности в качестве низкочастотного звена для работы в помещениях. Параметры взяты с 35 ГДН-1-4   Характеристики   Диапазон частот: 40 – 5000 Гц Неравномерность АЧХ: 14 дБ Чувствительность: 84 дБ Рабочая мощность: 25 Вт Коэффициент …