DIY » Статьи » Теория, Обзоры, Размышления » Измерение и расчет параметров Тиля-Смолла

Измерение и расчет параметров Тиля-Смолла

Самыми основными параметрами динамической головки, по которым можно рассчитать и изготовить акустическое оформление (проще говоря – ящик) являются:

  1. резонансная частота Fs (Гц)
  2. эквивалентный объем Vas (л)
  3. полная добротность Qts
  4. сопротивление постоянному току Re (Ом)

Для более серьезного подхода понадобится:

  1. механическая добротность Qms
  2. электрическая добротность Qes
  3. площадь диффузора Sd (м2) или его диаметр D (см)
  4. чувствительность SPL (дБ)
  5. индуктивность Le (Гн)
  6. импеданс Z (Ом)
  7. пиковая мощность Pe (Вт)
  8. масса подвижной системы Mms (г)
  9. относительная жесткость Cms (метров/ньютон)
  10. механическое сопротивление Rms (кг/сек)
  11. двигательная мощность BL

Основным измерением является нахождение Z-кривой на частоте резонанса, которую можно измерить, собрав следующее оборудование:

  1. вольтметр;
  2. генератор сигналов звуковой частоты;
  3. мощный (5 Вт) резистор сопротивлением 1 кОм;
  4. точный (±1%) резистор сопротивлением 10 Ом;

Большинство генераторов имеют собственную шкалу частоты, но если такой нет, то понадобится еще и частотомер, включенный параллельно на выходе генератора. Вместо генератора можно использовать звуковую плату компьютера и программу с генератором.

Собираем схему:

^Нажмите для увеличения^

Для начала необходимо откалибровать вольтметр. Для этого вместо динамика подсоединяется сопротивление 10 Ом и подбором напряжения, выдаваемого генератором, надо добиться напряжения 0,01 В. Если резистор другого номинала, то напряжение должно соответствовать 1/1000 номинала сопротивления в [Ом]. Например для калибровочного сопротивления 4 Ом напряжение должно быть 0,004 В. После калибровки регулировать выходное напряжение генератора НЕЛЬЗЯ до окончания всех измерений. Измеряемый динамик при этом и всех последующих измерениях должен находиться в свободном пространстве.

Re – сопротивление динамика по постоянному току (Ом)

Подсоединив вместо калибровочного сопротивления динамик и выставив на генераторе частоту, близкую к 0 Гц, мы можем определить его сопротивление постоянному току – Re. Им будет являться показание вольтметра, умноженное на 1000. Впрочем, Re можно замерить и непосредственно омметром.

Fs – частота основного резонанса (Гц)

Резонансная частота динамика находится по пику его импеданса (Z-характеристике). Для ее нахождения плавно изменяйте частоту генератора и смотрите на показания вольтметра. Та частота, на которой напряжение на вольтметре будет максимальным (дальнейшее изменение частоты будет приводить к падению напряжения) и будет являться частотой основного резонанса для этого динамика. Показания вольтметра, умноженные на 1000, дадут сопротивление динамика на резонансной частоте Rmax. Получив похожую кривую импеданса, можно рассчитать остальные параметры.

^Нажмите для увеличения^

Ro и Rx – промежуточные сопротивления для последующих расчетов (Ом)

^Нажмите для увеличения^

Rx важный параметр, его можно рассчитать по двум формулам. В любом случае, значение Rx должно быть одинаковым:

^Нажмите для увеличения^
^Нажмите для увеличения^

Rmax –  максимальное сопротивление (сопротивление на частоте резонанса);
Re – сопротивление динамика (измеряем точным тестером или на частоте 0 Гц).

Qms – механическая добротность

^Нажмите для увеличения^

Fs – частота основного резонанса, найдена ранее;
Ro – промежуточное сопротивление, найдено ранее.
F1 – первая частота на Z-кривой по уровню Rx;
F2 – вторая частота на Z-кривой по уровню Rx.

Частоты F1 и F2 – это частоты, при которых сопротивление динамика равно Rx. Поскольку Rx всегда меньше Rmax, то и частот будет две – одна меньше Fs, а другая больше. Проверить результаты расчетов можно по следующей формуле:

^Нажмите для увеличения^

Если расчетный результат отличается от найденного ранее больше, чем на 1 Гц, то нужно повторить все сначала и более аккуратно.

Qes – электрическая добротность

^Нажмите для увеличения^

Qts – полная добротность

^Нажмите для увеличения^

Мы нашли и рассчитали основные параметры, по которым можем сделать некоторые выводы:

  1. Если резонансная частота динамика выше 50 Гц, то он имеет право претендовать на работу в лучшем случае как мидбас. О сабвуфере на таком динамике можно сразу забыть.
  2. Если резонансная частота динамика выше 100 Гц, то это вообще не низкочастотник. Можете использовать его для воспроизведения средних частот в трехполосных системах.
  3. Если соотношение Fs/Qts у динамика составляет менее 50-ти, то этот динамик предназначен для работы исключительно в закрытых ящиках. Если больше 100 – исключительно для работы с фазоинвертором или в бандпассах. Если же значение находится в промежутке между 50 и 100, то тут нужно внимательно смотреть и на другие параметры – к какому типу акустического оформления динамик тяготеет. Лучше всего для этого использовать специальные компьютерные программы, способные смоделировать в графическом виде акустическую отдачу такого динамика в разном акустическом оформлении. Но при этом не обойтись без других, не менее важных параметров – Vas, Sd, Cms и L.

Sd – эффективная излучающая поверхность диффузора (м2)

^Нажмите для увеличения^

П – число “пи” математическая постоянная, равная 3,14;
r – радиус, в данном случае половина расстояния от середины ширины резинового подвеса одной стороны до середины резинового подвеса противоположной. Это связано с тем, что половина ширины резинового подвеса также является излучающей поверхностью. Обратите внимание что единица измерения этой площади – квадратные метры. Соответственно и радиус нужно в нее подставлять в метрах.

L – индуктивность катушки динамика (Гн)

Для этого нужны результаты одного из отсчетов из самого первого теста. Понадобится импеданс (полное сопротивление) звуковой катушки на частоте около 1000 Гц. Поскольку реактивная составляющая (XL) отстоит от активной Re на угол 90°, то можно воспользоваться теоремой Пифагора:

^Нажмите для увеличения^

Поскольку Z (импеданс катушки на определенной частоте) и Re (сопротивление катушки по постоянному току) известны, то формула преобразуется к:

^Нажмите для увеличения^

Z – сопротивление динамика на частоте 1000 Гц;
Re – сопротивление динамика (измеряем точным тестером или на частоте 0 Гц).

Найдя реактивное сопротивление XL на частоте F можно рассчитать и саму индуктивность по формуле:

^Нажмите для увеличения^

XL– реактивное сопротивление, найденное оп предыдущей формуле;
П – число “пи” математическая постоянная, равная 3,14;
F – частота, на которой определяем индуктивность, обычно 1000 Гц.

Vas – эквивалентный объем

В домашних условиях проще использовать два метода определения эквивалентного объема динамкиа: метод “добавочной массы” и метод “добавочного объема”. Первый из них требует из материалов несколько грузиков известного веса. Можно использовать набор грузиков от аптечных весов или воспользоваться старыми медными монетками 1,2,3 и 5 копеек, поскольку вес такой монетки в граммах соответствует номиналу. Второй метод требует наличия герметичного ящика заранее известного объема с соответствующим отверстием под динамик.

Vas – метод добавочной массы

Для начала нужно равномерно нагрузить диффузор грузом и вновь измерить его резонансную частоту, записав ее как F’s. Она должна быть ниже, чем Fs. Лучше если новая резонансная частота будет меньше на 30-50%. Масса груза берется приблизительно 10 граммов на каждый дюйм диаметра диффузора. Т.е. для 12″ головки нужен груз массой около 120 граммов.

Cms – относительная жесткость на основе полученных результатов:

^Нажмите для увеличения^

П – число “пи” математическая постоянная, равная 3,14;
Fs – резонансная частота без оформления, рассчитана выше (Гц);
F’s – резонансная частота без оформления с грузом (Гц);
M – масса в груза (кг).

Исходя из полученных результатов Vas рассчитывается по формуле (м3):

^Нажмите для увеличения^

Vas – метод добавочного объема

Для этого понадобится герметичный закрытый ящик с нужным отверстием под измеряемый динамик. Крепим динамик магнитом наружу. Объем ящика обозначен как Vb. Затем нужно произвести измерения Fс (резонансной частоты динамика в закрытом ящике) и, соответственно, вычислить Qmc, Qec и Qtc. Методика измерения полностью аналогична описанной выше динамика без оформления, рисуем такую же Z-кривую. Затем находится эквивалентный объем по формуле:

^Нажмите для увеличения^

Vb – объем закрытого ящика;
Fс – резонансная частота динамика в ящике;
Qec – электрическая добротность динамика в ящике;
Fs – резонансная частота динамика без оформления;
Qes – электрическая добротность динамика без оформления.

Практически с теми же результатами можно использовать и более простую формулу:

^Нажмите для увеличения^

Vb – объем закрытого ящика;
Fс – резонансная частота динамика в ящике;
Fs – резонансная частота динамика без оформления;

Полученных в результате всех этих измерений данных достаточно для дальнейшего расчета акустического оформления низкочастотного звена достаточно высокого класса. Приведенная выше методика действенна только для измерения параметров динамиков с резонансными частотами ниже 100 Гц, на более высоких частотах погрешность возрастает.

По материалам: cxem.net

 

 

Источник

74, 1

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Смотрите также:

  • Триод 6С66ПТриод 6С66П
    Триод 6С66П 6С66П Триод ^Нажмите для увеличения^   Обозначения: а — анод, с — сетка, к — катод, п — подогреватель катода.         Источник 29, 1
  • Бестрансформаторный УМЗЧ RCA OTL на лампах 6082 (25Вт)Бестрансформаторный УМЗЧ RCA OTL на лампах 6082 (25Вт)
    Принципиальная схема лампового бестрансформаторного усилителя мощности (Tube Amp) на лампах 6082. Выходная мощность усилителя — 25 Ватт. RCA OTL Tube Amplifier Schematic (output — 6082). ^Нажмите для увеличения^ Рис. 1. Cхема лампового усилителя мощности RCA OTL на 6082. Schematic of 25-watt music amplifier.     Источник 29, 1
  • Автоматическое слежение за частотой — Кривицкий Б.X.Автоматическое слежение за частотой — Кривицкий Б.X.
    ^Нажмите для увеличения^ Массовая радиобиблиотека (МРБ) выпуск 860 Автоматическое слежение за частотой Автор(ы): Кривицкий Б.X. 1974 год В книге в популярной форме на основе физических представлений рассказывается об устройствах автоматического слежения за частотой. Книга рассчитана на подготовленных радиолюбителей. Скачать книгу «Автоматическое слежение за частотой»     Источник 6, 1
  • Запись и перезапись магнитных фонограмм — Козюренко Ю.И.Запись и перезапись магнитных фонограмм — Козюренко Ю.И.
    ^Нажмите для увеличения^ Массовая радиобиблиотека (МРБ) выпуск 1015 Запись и перезапись магнитных фонограмм Автор(ы): Козюренко Ю.И. 1980 год Рассматриваются практические вопросы перезаписи магнитных фонограмм и запись звуковых программ с радиоприемника, телевизора, проигрывателя и иных источников. Даются советы по использованию различных устройств и приспособлений для получения звуковых эффектов при записи и …
  • YES-3.2 – усилитель мощности Генадия БрагинаYES-3.2 – усилитель мощности Генадия Брагина
    Усилитель с одной микросхемой LT1210 и Mosfet-ами выдает до 100 Вт мощности с коэффициентом нелинейных искажений (КНИ) 0,002-0,003%. При этом скорость нарастания выходного сигнала более 200 В/мкс. ^Нажмите для увеличения^ Осциллограммы: ^Нажмите для увеличения^ ^Нажмите для увеличения^ ^Нажмите для увеличения^ Печатная плата от LepekhinV:(номинал резистора R22 необходимо изменить на 10 …