Конденсатор

Конденсатор — это двухполюсник с определённым или переменным значением ёмкости и малой проводимостью; устройство для накопления заряда и энергии электрического поля.

Список конденсаторов

^Нажмите для увеличения^

Конденсатор является пассивным электронным компонентом. В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок. Практически применяемые конденсаторы имеют много слоёв диэлектрика и многослойные электроды, или ленты чередующихся диэлектрика и электродов, свёрнутые в цилиндр или параллелепипед со скруглёнными четырьмя рёбрами (из-за намотки).

^Нажмите для увеличения^

Изобрел первую конструкцию-прототип электрического конденсатора «лейденскую банку» в 1745 году, в Лейдене, немецкий каноник Эвальд Юрген фон Клейст и независимо от него голландский физик Питер ван Мушенбрук.

^Нажмите для увеличения^

Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течёт, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещения.

При изменении частоты изменяются диэлектрическая проницаемость диэлектрика и степень влияния паразитных параметров — собственной индуктивности и сопротивления потерь. На высоких частотах любой конденсатор можно рассматривать как последовательный колебательный контур, образуемый ёмкостью, собственной индуктивностью и сопротивлением потерь.

Резонансная частота конденсатора равна: fр = 1/ (2∏ ∙ √Lс ∙ C).

При f > fp конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах f < fp, на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2—3 раза ниже резонансной.

Отечественные неполярные конденсаторы:

^Нажмите для увеличения^

На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 1·106 пФ = 1·10−6 Ф) и пикофарадах, но нередко и в нанофарадах (1 нФ = 1·10−9 Ф). При ёмкости не более 0,01 мкФ, ёмкость конденсатора указывают в пикофарадах, при этом допустимо не указывать единицу измерения, то есть постфикс «пФ» опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения. Для электролитических конденсаторов, а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах (В) или киловольтах (кВ). Например так: «10 мкФ x 10 В». Для переменных конденсаторов указывают диапазон изменения ёмкости, например так: «10 — 180».

Основные параметры конденсаторов:

  1. Основной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками. Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до тысяч микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.
  2. Конденсаторы также характеризуются удельной ёмкостью — отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.
  3. Плотность энергии электролитического конденсатора зависит от конструктивного исполнения. Максимальная плотность достигается у больших конденсаторов, где масса корпуса невелика по сравнению с массой обкладок и электролита.
  4. Другой, не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах. Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается, что связано с увеличением тепловой скорости движения носителей заряда и, соответственно, снижению требований для образования электрического пробоя.
  5. Полярность. Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.

Обозначение на схемах:

^Нажмите для увеличения^

Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.

По виду диэлектрика различают:

  1. Конденсаторы вакуумные (между обкладками находится вакуум).
  2. Конденсаторы с газообразным диэлектриком.
  3. Конденсаторы с жидким диэлектриком.
  4. Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
  5. Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.
  6. Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего большой удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах), или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги или спечённого порошка. Время наработки на отказ типичнного электролитического конденсатора 3000-5000 часов при максимально допустимой температуре, качественные конденсаторы имеют время наработки на отказ не менее 8000 часов при температуре 105°С. Рабочая температура — основной фактор, влияющий на продолжительность срока службы конденсатора. Если нагрев конденсатора незначителен из-за потерь в диэлектрике, обкладках и выводах, (например, при использовании его во времязадающих цепях при небольших токах или в качестве разделительных), можно принять, что интенсивность отказов снижается вдвое при снижении рабочей температуры на каждые 10 °C вплоть до +25 °C. Твердотельные конденсаторы — вместо традиционного жидкого электролита используется специальный токопроводящий органический полимер или полимеризованный органический полупроводник. Время наработки на отказ ~50000 часов при температуре 85°С. ЭПС меньше чем у жидко-электролитических и слабо зависит от температуры. Не взрываются.

Вакуумный конденсатор:

^Нажмите для увеличения^

Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:

  1. Постоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
  2. Переменные конденсаторы — конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термоконденсаторы). Применяются, например, в радиоприёмниках для перестройки частоты резонансного контура.
  3. Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.

Два бумажных электролитических конденсатора 1930 года:

^Нажмите для увеличения^

В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляющие, дозиметрические, пусковые и другие конденсаторы.

^Нажмите для увеличения^

Серебрянный конденсатор для аудио.

Также различают конденсаторы по форме обкладок:

^Нажмите для увеличения^

 

 

Источник

34, 1

Добавить комментарий

Ваш адрес email не будет опубликован.

Смотрите также:

  • 6Д16Д — Двухэлектродная лампа(диод)6Д16Д — Двухэлектродная лампа(диод)
    ^Нажмите для увеличения^ Схема соединения электродов лампы 6Д16Д ^Нажмите для увеличения^ Корпус лампы 6Д16Д Описание Диоды сверхвысокочастотные для детектирования импульсных сигналов СВЧ. Оформление—в металлостеклянной оболочке, сверхминиатюрное. Масса 3,5 г. Основные параметры при Uн = 6.3 В Параметр Условия 6Д16Д 6Д16Д-Р Ед. изм. Аналог — — — — Ток накала — 240±40 260±40 …
  • Телевизионный прием (2-е изд.) — Фельдман Л.Д.Телевизионный прием (2-е изд.) — Фельдман Л.Д.
    ^Нажмите для увеличения^ Массовая радиобиблиотека (МРБ) выпуск 766 Телевизионный прием (2-е изд.) Автор(ы): Фельдман Л.Д. 1971 год Рассмотрены принципы построения современного черно-белого и цветного телевизоров — от простейших функциональных цепей до основных блоков и узлов схемы. Рассмотрены также вопросы борьбы с помехами телевидению, способы отыскания и устранения неисправностей в телевизоре …
  • 180 АС-004 «Корвет»180 АС-004 «Корвет»
    Изготовитель: ОАО «Завод Ладога» ^Нажмите для увеличения^ Технические характеристики: 3-х полосная АС с фазоинвертором Диапазон воспроизводимых частот: 40 – 25000 Гц Чувствительность: 89 дБ Номинальное электрическое сопротивление: 8 Ом Предельные мощности: синусоидальная: 90 Вт шумовая: 100 Вт долговременная: 180 Вт кратковременная: 300 Вт Коэффициент гармоник на частотах: 250 Гц, 500 …
  • Схема сетевого выпрямителя для батарейных приемников на лампах (1,2В 9В 90В)Схема сетевого выпрямителя для батарейных приемников на лампах (1,2В 9В 90В)
    Устройство состоит из двух выпрямителей с общим силовым трансформатором (фиг. 1). Принципиальная схема  ^Нажмите для увеличения^ Фиг. 1. Схема сетевого выпрямителя для питания батарейных приемников на лампах — 1,2В 9В и 90В. Первый двухполупериодньй выпрямитель с лампой 6Х6С дает напряжение 90 в при токе около 8 ма и служит для …
  • Усилитель Jean Hiraga’s класса А (8 Вт)Усилитель Jean Hiraga’s класса А (8 Вт)
    В блоке питания применены конденсаторы емкостью 127000 мкФ на канал (это больше в три раза от емкости рекомендованной автором схемы). Трансформатор использован тороидальный мощностью 500 Вт, вместо рекомендованного 160 Вт. Электрическая схема: ^Нажмите для увеличения^ Монтажная схема и печатная плата: ^Нажмите для увеличения^ Схема блока питания: ^Нажмите для увеличения^ Корпус …