DIY » Статьи » Теория, Обзоры, Размышления » Составной транзистор (схема Дарлингтона и Шиклаи)

Составной транзистор (схема Дарлингтона и Шиклаи)

Составной транзистор — электрическое соединение двух или более биполярных транзисторов, полевых транзисторов или IGBT-транзисторов, с целью улучшения их электрических характеристик. К этим схемам относят так называемую пару Дарлингтона, пару Шиклаи, каскодную схему включения транзисторов, схему так называемого токового зеркала и др.

 

^Нажмите для увеличения^

Условное обозначение составного транзистора

 

Составной транзистор имеет три вывода (база, эмиттер и коллектор), которые эквивалентны выводам обычного одиночного транзистора. Коэффициент усиления по току типичного составного транзистора (иногда ошибочно называемого «супербета»), у мощных транзисторов ≈ 1000 и у маломощных транзисторов ≈ 50000. Это означает, что небольшого тока базы достаточно для того, чтобы составной транзистор открылся.

В отличие от биполярных, полевые транзисторы не используются в составном включении. Объединять полевые транзисторы нет необходимости, так как они и без того обладают чрезвычайно малым входным током. Однако существуют схемы (например, биполярный транзистор с изолированным затвором), где совместно применяются полевые и биполярные транзисторы. В некотором смысле, такие схемы также можно считать составными транзисторами. Так же для составного транзистора достигнуть повышения значения коэффициента усиления можно, уменьшив толщину базы, но это представляет определенные технологические трудности.

Примером супербета (супер-β) транзисторов может служить серия КТ3102, КТ3107. Однако их также можно объединять по схеме Дарлингтона. При этом базовый ток смещения можно сделать равным всего лишь 50 пкА (примерами таких схем служат операционные усилители типа LM111 и LM316).

 

^Нажмите для увеличения^

Фото типичного усилителя на составных транзисторах

 

Схема Дарлингтона

 

Один из видов такого транзистора изобрёл инженер-электрик Сидни Дарлингтон (Sidney Darlington).

 

^Нажмите для увеличения^

Принципиальная схема составного транзистора

 

Составной транзистор является каскадным соединением нескольких транзисторов, включенных таким образом, что нагрузкой в эмиттере предыдущего каскада является переход база-эмиттер транзистора следующего каскада, то есть транзисторы соединяются коллекторами, а эмиттер входного транзистора соединяется с базой выходного. Кроме того, в составе схемы для ускорения закрывания может использоваться резистивная нагрузка первого транзистора. Такое соединение в целом рассматривают как один транзистор, коэффициент усиления по току которого при работе транзисторов в активном режиме приблизительно равен произведению коэффициентов усиления первого и второго транзисторов:

 

βс = β1 ∙ β2

 

Покажем, что составной транзистор действительно имеет коэффициент β, значительно больший, чем у его обоих компонентов. Задавая приращение dlб = dlб1, получаем:

 

dlэ1 = (1 + β1) ∙ dlб = dlб2

 

dlк = dlк1 + dlк2 = β1 ∙ dlб + β2 ∙ ((1 + β1) ∙ dlб)

 

Деля d на dlб, находим результирующий дифференциальный коэффициент передачи:

 

βΣ = β1 + β2 + β1 ∙ β2

 

Поскольку всегда β>1, можно считать:

 

βΣ = β1β1

 

Следует подчеркнуть, что коэффициенты β1 и β1 могут различаться даже в случае однотипных транзисторов, поскольку ток эмиттера Iэ2 в 1 + β2 раз больше тока эмиттера Iэ1 (это вытекает из очевидного равенства Iб2 = Iэ1).

 

Схема Шиклаи

 

Паре Дарлингтона подобно соединение транзисторов по схеме Шиклаи, названное так в честь его изобретателя Джорджа Шиклаи, также иногда называемое комплементарным транзистором Дарлингтона. В отличие от схемы Дарлингтона, состоящей из двух транзисторов одного типа проводимости, схема Шиклаи содержит транзисторы разной полярности (p–n–p и n–p–n). Пара Шиклаи ведет себя как n–p–n-транзистор c большим коэффициентом усиления. Входное напряжение — это напряжение между базой и эмиттером транзистора Q1, а напряжение насыщения равно, по крайней мере, падению напряжения на диоде. Между базой и эмиттером транзистора Q2 рекомендуется включать резистор с небольшим сопротивлением. Такая схема применяется в мощных двухтактных выходных каскадах при использовании выходных транзисторов одной полярности.

 

^Нажмите для увеличения^

Каскад Шиклаи, подобный транзистору с n–p–n переходом

 

Каскодная схема

 

Составной транзистор, выполненный по так называемой каскодной схеме, характеризуется тем, что транзистор VT1 включен по схеме с общим эмиттером, а транзистор VT2 — по схеме с общей базой. Такой составной транзистор эквивалентен одиночному транзистору, включенному по схеме с общим эмиттером, но при этом он имеет гораздо лучшие частотные свойства и большую неискаженную мощность в нагрузке, а также позволяет значительно уменьшить эффект Миллера (увеличение эквивалентной ёмкости инвертирующего усилительного элемента, обусловленное обратной связью с выхода на вход данного элемента при его выключении).

 

Достоинства и недостатки составных транзисторов

 

Высокие значения коэффициента усиления в составных транзисторах реализуются только в статическом режиме, поэтому составные транзисторы нашли широкое применение во входных каскадах операционных усилителей. В схемах на высоких частотах составные транзисторы уже не имеют таких преимуществ — граничная частота усиления по току и быстродействие составных транзисторов меньше, чем эти же параметры для каждого из транзисторов VT1 и VT2.

 

Достоинства:

а) Высокий коэффициент усиления по току.

б) Cхема Дарлингтона изготавливается в виде интегральных схем и при одинаковом токе рабочая поверхность кремния меньше, чем у биполярных транзисторов. Данные схемы представляют большой интерес при высоких напряжениях.

 

Недостатки:

а) Низкое быстродействие, особенно перехода из открытого состояния в закрытое. По этой причине составные транзисторы используются преимущественно в низкочастотных ключевых и усилительных схемах, на высоких частотах их параметры хуже, чем у одиночного транзистора.

б) Прямое падение напряжения на переходе база-эмиттер в схеме Дарлингтона почти в два раза больше, чем в обычном транзисторе, и составляет для кремниевых транзисторов около 1,2 — 1,4 В (не может быть меньше, чем удвоенное падение напряжения на p-n переходе).

в) Большое напряжение насыщения коллектор-эмиттер, для кремниевого транзистора около 0,9 В (по сравнению с 0,2 В у обычных транзисторов) для маломощных транзисторов и около 2 В для транзисторов большой мощности (не может быть меньше чем падение напряжения на p-n переходе плюс падение напряжения на насыщенном входном транзисторе).

Применение нагрузочного резистора R1 позволяет улучшить некоторые характеристики составного транзистора. Величина резистора выбирается с таким расчётом, чтобы ток коллектор-эмиттер транзистора VT1 в закрытом состоянии создавал на резисторе падение напряжения, недостаточное для открытия транзистора VT2. Таким образом, ток утечки транзистора VT1 не усиливается транзистором VT2, тем самым уменьшается общий ток коллектор-эмиттер составного транзистора в закрытом состоянии. Кроме того, применение резистора R1 способствует увеличению быстродействия составного транзистора за счёт форсирования закрытия транзистора VT2. Обычно сопротивление R1 составляет сотни Ом в мощном транзисторе Дарлингтона и несколько кОм в малосигнальном транзисторе Дарлингтона. Примером схемы с эмиттерным резистором служит мощный n-p-n — транзистор Дарлингтона типа кт825, его коэффициент усиления по току равен 10000 (типичное значение) для коллекторного тока, равного 10 А.

 

 

Источник

332, 1

Добавить комментарий

Ваш адрес email не будет опубликован.

Смотрите также:

  • Лампа ВЭУ-4 — Вторично-электронный умножительЛампа ВЭУ-4 — Вторично-электронный умножитель
      ^Нажмите для увеличения^ Схема соединения электродов лампы ВЭУ-4 ^Нажмите для увеличения^ Корпус лампы ВЭУ-4 Описание Вторично-электронный умножитель каналового типа с электростатической фокусировкой электронов и открытым входом для регистрации заряженных частиц малых энергий, ультрафиолетового и мягкого рентгеновского излучений, а также для регистрации нейтральных частиц. Вход — открытый. Размер входного окна …
  • 1V2 Диод — Электронная лампа, Радиолампа1V2 Диод — Электронная лампа, Радиолампа
      1V2 Диод (Half-Wave Vacuum Rectifier) ^Нажмите для увеличения^ ^Нажмите для увеличения^   Схема соединения электродов лампы 1V2 с выводами: 4-5 — катод прямого накала; 1-9 — анод;  Общие данные Производство: Год выпуска: Аналоги: Возможная замена: R-2AV2 Цоколь: Noval, B9A ^Нажмите для увеличения^     Источник 11, 1
  • Акробатика ламповых каскадовАкробатика ламповых каскадов
    Все, кто хоть немного знаком с ламповой схемотехникой, знают, что ламповые усилительные каскады отличаются, как правило, предельной простотой и малым количеством элементов. Этот фактор наряду с природной линейностью ламп обычно и приводится в качестве аргумента при попытке объяснить феномен превосходства лампового звука над транзисторным. Надо признать, что подобное объяснение весьма …
  • Переменные резисторы — Марченко А.Н.Переменные резисторы — Марченко А.Н.
    ^Нажмите для увеличения^ Массовая радиобиблиотека (МРБ) выпуск 1017 Переменные резисторы Автор(ы): Марченко А.Н. 1980 год Рассмотрены устройство и основные параметры переменных резисторов, приведены их технические н эксплуатационные характеристики. Указаны особенности эксплуатации и даны рекомендации по применению различных типов переменных резисторов. Для радиолюбителей. Может быть использована также специалистами, работающими в области …
  • Пентод высокочастотный 6К6А-ВПентод высокочастотный 6К6А-В
    Пентод высокочастотный 6К6А-В 6К6А-В Пентод высокочастотный ^Нажмите для увеличения^   Обозначения: а — анод, с1 — сетка первая, с2 — сетка вторая, с3 — сетка третья, к — катод, п — подогреватель катода.         Источник 38, 1