DIY » Статьи » Теория, Обзоры, Размышления » Знакомство и проверка измерительного тракта с Arta Software

Знакомство и проверка измерительного тракта с Arta Software

Сложность измерений электрических и акустических параметров динамиков часто подталкивает на отказ от данной процедуры и впоследствии процесс создания АС происходит с ориентиром на простые формулы расчета, учитывающие только электрические параметры динамиков, да и то идеальных. Думаю, нет смысла лишний раз углубляться в рассказы о том, что результат в таком случае даже близко не оправдывает ожидания. Лукавить не буду, процесс измерений сложен, требует некоторого специального оборудования и, что очень важно, навыков работы с программами для проведения измерений. Мало просто измерить, нужно сделать это максимально объективно, и единственным ограничением при измерениях должна оставаться погрешность измерительного оборудования.

Далее я постараюсь подробно рассказать о методике проведения измерений в пакете Arta Software. Эту программу я полюбил за удобство и легкость в работе, возможность всестороннего анализа результатов измерений. Последняя версия программы доступна на сайте разработчиков. На данный момент это версия 1.6.1. Там же можно загрузить оригинальные руководства по работе с компонентами пакета, правда, на английском языке. Эти руководства входят в справочную систему программы. Вызвать ее можно через меню Help – User Manual.

Для проведения измерений понадобится некоторое оборудование. Ниже перечислено то, что используется у меня:

  1. Ноутбук Dell Inspiron 1720 соперационнойсистемой Windows XP Professional x86 иустановленнымпрограммнымпакетом Arta Software.
  2. Звуковая карта E-MU 0404 USB.
  3. Усилитель Denon PMA-500AE. Он подходит, поскольку имеет функцию обхода коррекции тембра, тонкомпенсации и баланса – Source Direct.
  4. Вольтметр В7-38.
  5. Магазин сопротивлений Р33.
  6. Микрофон измерительный Nady CM 100.
  7. Стойка для микрофона. В ее роли выступает стойка от фотоаппарата, обладающая функциями наклона, поворота и регулировки высоты.
  8. “Референсный” резистор (Rref), необходимый при измерениях импеданса. Я использую ПЭВ-10 номиналом 10 Ом. Измеренное сопротивление составляет 9.85 Ом.
  9. Два кабеля с делителями, защищающими вход звуковой карты от опасных для нее величин напряжения. Делители распаяны внутри TRS-джека.
  10. Микрофонный кабель XLR и несколько кабелей для соединения входов/выходов звуковой карты и ее соединения с усилителем.

Первое знакомство и проверка измерительного тракта

 

Перед началом непосредственно измерений необходимо удостовериться, что используемый измерительный тракт обладает достаточной линейностью. Для этого производится подключение оборудования по схеме Figure 1.

^Нажмите для увеличения^

Figure 1

 

Запускаем Arta. Для этого в Windows меню “Пуск” необходимо выбрать Все программы – Arta Software – Arta. Откроется окно, называемое окном импульсной характеристики (Impulse Response). Его вид показан ниже (Figure 2).

^Нажмите для увеличения^

Figure 2

 

Мне не очень приятен стандартный темный интерфейс, поэтому я его изменяю на светлый с помощью функции меню Edit – B/W background color. Также я изменяю стандартную цветовую гамму через меню Edit – Colors and grid style.

Первым делом производится настройка программы. Для этого переходим в меню Setup – Audio devices (Figure 3).

^Нажмите для увеличения^

Figure 3

 

В полях Input Device и Output Device указывается используемая звуковая карта. В поле WaveFormat выбирается разрядность цифровых данных, с которыми будет работать звуковая карта. Разработчики Arta Software рекомендуют использовать 24 или 32 bit, но только в том случае, если используемая звуковая карта является высококачественной. Мотивируют это справедливо – далеко не все звуковые карты, предназначенные для работы с разрядностью данных 24 bit, обладают линейностью на уровне хотя бы 16 bit. Также возможно появление сообщения об ошибке при запуске измерений, если звуковая карта не поддерживает указанную в поле WaveFormat разрядность. При выборе 24 либо 32 bit автоматически устанавливается галочка Extensible. Снимать ее не нужно, иначе при запуске измерений программа выдаст ошибку. Все остальные поля предназначены для работы с калиброванным измерительным комплексом, поэтому я их пропускаю. Выполняем установки и нажимаем ОК.

Переходим в меню Setup – Calibrate devices (Figure 4).

^Нажмите для увеличения^

Figure 4

 

Это меню предназначено для калибровки измерительного комплекса. Нас интересует только раздел Soundcard full scale output (mV). Здесь нажимаем кнопку Generate sinus (400Hz) и устанавливаем на выходе усилителя необходимое для теста напряжение. Никаких критических требований к величине этого напряжения нет, просто устанавливается не большая и не маленькая величина. Я установил по вольтметру 0.7041 v. Обратите внимание, что в поле Output level установлено значение -3 dB. После установки нажимаем повторно кнопку (теперь уже с надписью Stop Generator) и закрываем окно.

Переходим в меню Setup – Analysis parameters (Figure 5).

^Нажмите для увеличения^

Figure 5

 

Здесь все установки нам подходят, за исключением FFT length. Это значение необходимо изменить на 16384. Именно такое, поскольку в дальнейшем при измерениях я буду использовать количество сэмплов тестового сигнала – 16384. Когда потребуется сменить (при измерениях зависимости нелинейных искажений от частоты), я об этом упомяну. Вообще, желательно, чтобы размер FFT всегда совпадал с количеством сэмплов тестового сигнала.

Переходим в меню Record – Impulse response/Signal time record (Figure 6). Выбираем вкладку Periodic Noise, если она не выбрана.

^Нажмите для увеличения^

Figure 6

 

Здесь, в поле Sequence length (количество сэмплов на период тестового сигнала), устанавливаем значение 16k (16384). При использовании частоты дискретизации 96 kHz, период составляет 16384/96000 = 170.67 ms, что в 3.4 раза больше значения, необходимого для измерения нижней границы звукового диапазона – 20 Гц. Увеличивать период, значит не только расширение полосы частот вниз, но и увеличение разрешения по частоте. При акустических измерениях платой за это выступает насыщение измеренного сигнала поздними отражениями помещения. На остальных полях сейчас не буду заострять внимание, вернемся к ним позже, при непосредственно акустических измерениях. Пока производим установку параметров согласно изображению и нажимаем кнопку Generate. Внизу, на индикаторе уровня, отобразятся уровни входных сигналов. С помощью доступных регулировок чувствительности устанавливаем значения в диапазоне -20…-10 dB, после чего отключаем генерацию повторным нажатием кнопки. Теперь нажимаем кнопку Record. После завершения измерений окно закроется автоматически.

Если все прошло успешно, в окне импульсной характеристики должен наблюдаться импульсный отклик системы (Figure 7).

^Нажмите для увеличения^

Figure 7

 

Для работы с окном импульсной характеристики в Arta используются курсор и маркер. Курсор устанавливается левой кнопкой мыши и определяет начало временнОго окна. Маркер устанавливается и удаляется правой кнопкой мыши и определяет конец временнОго окна. ВременнАя разница между положениями курсора и маркера – это окно измерений (Gate). Из информации, что находится внутри этого окна, производится расчет графиков АЧХ, ФЧХ, ГВЗ, кумулятивного спектра и графика распада. Остальные графики отображают результаты измерений на основе полного периода тестового сигнала. Внизу окна Impulse Response отображена позиция курсора, ей соответствует 0 ms, 0 сэмплов. В данном случае эта позиция и требуется. Для вычисления фазовой характеристики необходимо установить значение задержки от положения курсора до максимума импульса. С помощью расположенных справа кнопок Gain, Zoom и Scroll устанавливаем вид импульса так, чтобы были видны позиции сэмплов, после чего устанавливаем маркер в центр импульса и нажимаем на панели инструментов кнопку Get. В поле Delay for phase estimation (ms) должно отобразиться значение задержки (Figure 8).

^Нажмите для увеличения^

Figure 8

 

С помощью кнопки Zoom делаем видимым все окно измерений (170 ms) и устанавливаем маркер в самом его конце. У меня длина окна измерений (Gate) соответствует 170.469 ms (16365 сэмплов). Теперь можно просмотреть результаты измерений. Сейчас нас интересует только линейность АЧХ и ФЧХ, поэтому нажимаем на панели инструментов кнопку с буквами FR (либо через меню выбираем Analysis – Single-gated smoothed Frequency response/Spectrum).  Откроется окно Smoothed frequency response (Figure 9).

^Нажмите для увеличения^

Figure 9

 

Слева внизу расположены четыре кнопки – Mag, M+P, Ph и Gd. Каждая отвечает за отображение графиков соответственно АЧХ, АЧХ+ФЧХ, ФЧХ и ГВЗ. Справа на панели, в поле Smoothing, можно выбрать сглаживание графика. Я использую стандартно 1/24 октавы, в редких случаях – более сильное сглаживание. Левой кнопкой мыши на графике производится установка курсора, а правой – открываются свойства графика. Более подробно к этому, а также к ряду других возможностей, я вернусь позже. Сейчас же результат получен, и можно видеть полную пригодность измерительного тракта для проведения измерений импеданса и акустических измерений.

Пока есть результат измерений, можно самостоятельно ознакомиться с меню программы и просмотреть, как выглядят графики для системы, идеальной относительно динамиков. Например, переходная характеристика. Программа не умеет отправлять на принтер результаты измерений и не умеет экспортировать их в графический формат, но позволяет перенести в буфер обмена. Для этого в каждом окне доступна кнопка Copy (либо через меню Edit – Copy). Посленажатия откроется окно Copy to Clipboard (Figure 10).

^Нажмите для увеличения^

Figure 10

 

В текстовом поле можно написать комментарий к графику, а в поле Choose bitmap size выбрать из списка размер изображения. Галочка Add filename and date добавляет к графику имя файла импульсной характеристики и текущую дату. Для примера, результат показан ниже (Figure 11). 

^Нажмите для увеличения^

Figure 11

Отдельное спасибо Сирвутису Алексею (Lexus) за предоставленную информацию.

 

 

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Смотрите также:

  • Лампа ФЭУ-110 (Фотоэлектронный умножитель)Лампа ФЭУ-110 (Фотоэлектронный умножитель)
      ^Нажмите для увеличения^ Схема соединения электродов лампы ФЭУ-110 ^Нажмите для увеличения^ Корпус лампы ФЭУ-110 ^Нажмите для увеличения^ РШ 34 Описание Фотоэлектронные умножитель для преобразования световых сигналов видимой и ближней инфракрасной частей спектра в электрические сигналы в различных радиоэлектронных устройствах широкого применения. Фотокатод — сурьмяно-натриево-калиево-цезиевый, полупрозрачный, спектральная характеристика №10. Оптический …
  • 1LA6 — Пентагрид1LA6 — Пентагрид
      1LA6 Пентагрид (Pentagrid-Converter (Heptode)) ^Нажмите для увеличения^ ^Нажмите для увеличения^   Схема соединения электродов лампы 1LA6 с выводами: g1 — управляющая сетка; f-f- катод прямого накала; g3,g5 — экранирующие сетки; a — анод; g4 — управляющая сетка; g2 — защитная сетка;  Общие данные Производство: Год выпуска: Аналоги: 1LA6E, CV775 …
  • 12FV7, Двойной триод — Электронная лампа, Радиолампа12FV7, Двойной триод — Электронная лампа, Радиолампа
      12FV7 Двойной триод (Double Triode) ^Нажмите для увеличения^ ^Нажмите для увеличения^   Схема соединения электродов лампы 12FV7 с выводами: 1 — анод первого триода; 2 — сетка первого триода; 3 — катод первого триода; 4-5 — подогреватель катода; 6 — анод второго триода; 7 — сетка второго триода; 8 …
  • 10 ГД-1710 ГД-17
    Назначение: применение в высококачественных акустических системах бытовой радиоаппаратуры в качестве НЧ звена при работе в помещениях. Технические характеристики: Полоса воспроизводимых частот: 40 – 8000 Гц Неравномерность АЧХ: 14 дБ Уровень характеристической чувствительности: 94 дБ/Вт/м Среднее стандартное звуковое давление: 0,3 Па Номинальная мощность: 10 Вт Сопротивление: 4,5 Ом (±0,5 Ом) Частота основного резонанса: 50 …
  • Трехполосная AC пространственного звукаТрехполосная AC пространственного звука
    Изготовление трёхполосной АС потребует гораздо больших трудозатрат, чем аналогичной двухполосной, но зато те, кто за это возьмётся, будут вознаграждены улучшенным качеством звучания средних и низших звуковых частот.Перед тем как приступить к работе, необходимо приобрести две низкочастотные (НЧ) головки 35ГДН-1-8, две среднечастотные (СЧ) 20ГДС-1-8 и две высокочастотные (ВЧ) 10ГДВ-2-16. Для изготовления …