Sergey Moiseev - Quantum memory in waveguides and resonator circuits

Sergey Moiseev (Kazan Quantum Center, Kazan National Research Technical University, Zavoisky Physical-Technical Institute)
Quantum memory in waveguides and resonator circuits

Progress in integrated quantum photonics pushes a development of on-chip optical quantum memory. Recently, several experiments demonstrated quantum storage in optical and microwave resonators as well as in crystal waveguides. We outline the physical principles and new possibilities in the implementation of quantum memory based on the use of optical and microwave resonators. Latest our experimental results obtained on the implementation of highly efficient multiresonator quantum memory for microwave photons and prospects for its practical use are discussed. We show that the use of the McCall-Hahn area theorem and its generalization to echo signal emission makes it possible to study the general nonlinear patterns of photon echo signals in free space in resonators and waveguides. We derive pulse-area theorem for coherent interaction of light pulse with resonant atoms in single mode waveguide and find its analytical solution which shows a striking difference in the formation of 2 pi pulses in such waveguides. Finally, we generalize this theorem to photon echo quantum memory protocols in different waveguides and we discuss experimental results obtained in the implementation of optical quantum memory in crystal waveguides as well as the prospects for its practical use.
Акустические системы
Комментариев нет.